
There is growing observational evidence for some kind of interaction between stars and close-in extrasolar giant planets. Shkolnik et al. reported variability in the chromospheric Ca H and K lines of HD 179949 and upsilon And that seemed to be phased with the planet's orbital period, instead of the stellar rotational period. However, the observations also indicate that the chromospheric light curves do not repeat exactly, which may be expected for a planet plowing through a variable stellar magnetic field. Using the complex solar magnetic field (modeled with the Potential Field Source Surface technique) as a guide, we simulate the shapes of light curves that would arise from planet-star interactions that are channeled along magnetic field lines. We also study the orbit-to-orbit variability of these light curves and how they vary from solar minimum (i.e., a more or less axisymmetric stretched dipole) to solar maximum (a superposition of many higher multipole moments) fields. Considering more complex magnetic fields introduces new difficulties in the interpretation of observations, but it may also lead to valuable new diagnostics of exoplanet magnetospheres.
10-page contributed poster paper, 5 figures (some at very low resolution), to be published in the proceedings of the 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, November 6-10, 2006, ed. G. van Belle (ASP Conf. Series). Higher resolution figures will be available on the proceedings CD-ROM, which should be linked to http://adswww.harvard.edu (ADS)
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
