Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2007
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exoplanet-Induced Chromospheric Activity: Realistic Light Curves from Solar-type Magnetic Fields

Authors: Cranmer, Steven R.; Saar, Steven H.;

Exoplanet-Induced Chromospheric Activity: Realistic Light Curves from Solar-type Magnetic Fields

Abstract

There is growing observational evidence for some kind of interaction between stars and close-in extrasolar giant planets. Shkolnik et al. reported variability in the chromospheric Ca H and K lines of HD 179949 and upsilon And that seemed to be phased with the planet's orbital period, instead of the stellar rotational period. However, the observations also indicate that the chromospheric light curves do not repeat exactly, which may be expected for a planet plowing through a variable stellar magnetic field. Using the complex solar magnetic field (modeled with the Potential Field Source Surface technique) as a guide, we simulate the shapes of light curves that would arise from planet-star interactions that are channeled along magnetic field lines. We also study the orbit-to-orbit variability of these light curves and how they vary from solar minimum (i.e., a more or less axisymmetric stretched dipole) to solar maximum (a superposition of many higher multipole moments) fields. Considering more complex magnetic fields introduces new difficulties in the interpretation of observations, but it may also lead to valuable new diagnostics of exoplanet magnetospheres.

10-page contributed poster paper, 5 figures (some at very low resolution), to be published in the proceedings of the 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, November 6-10, 2006, ed. G. van Belle (ASP Conf. Series). Higher resolution figures will be available on the proceedings CD-ROM, which should be linked to http://adswww.harvard.edu (ADS)

Related Organizations
Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green