Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2003 . Peer-reviewed
Data sources: Crossref
Development
Article . 2004
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genetic dissection ofPitx2in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration

Authors: Jennifer Selever; Mei-Fang Lu; Wei Liu; James F. Martin;

Genetic dissection ofPitx2in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration

Abstract

Pitx2, a paired-related homeobox gene that encodes multiple isoforms, is the gene mutated in the haploinsufficient Rieger Syndrome type 1 that includes dental, ocular and abdominal wall anomalies as cardinal features. Previous analysis of the craniofacial phenotype of Pitx2-null mice revealed that Pitx2 was both a positive regulator of Fgf8 and a repressor of Bmp4-signaling,suggesting that Pitx2 may function as a coordinator of craniofacial signaling pathways. We show that Pitx2 isoforms have interchangeable functions in branchial arches and that Pitx2 target pathways respond to small changes in total Pitx2 dose. Analysis of Pitx2allelic combinations that encode varying levels of Pitx2 showed that repression of Bmp signaling requires high Pitx2 while maintenance of Fgf8 signaling requires only low Pitx2. Fate-mapping studies with a Pitx2 cre recombinase knock in allele revealed that Pitx2 daughter cells are migratory and move aberrantly in the craniofacial region of Pitx2 mutant embryos. Our data reveal that Pitx2 function depends on total Pitx2 dose and rule out the possibility that the differential sensitivity of target pathways was a consequence of isoform target specificity. Moreover, our results uncover a new function of Pitx2 in regulation of cell motility in craniofacial development.

Related Organizations
Keywords

Homeodomain Proteins, Mice, Knockout, Skull, Gene Expression Regulation, Developmental, Nuclear Proteins, Tooth Germ, Craniofacial Abnormalities, Mice, Branchial Region, Cell Movement, Face, Mutation, Morphogenesis, Homeobox Protein PITX2, Animals, Humans, Abnormalities, Multiple, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    142
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
142
Top 10%
Top 10%
Top 10%
bronze