
The molecular mechanism by which dual-specificity RasGAPs of the Gap1 subfamily activate the GTP hydrolysis of both Rap and Ras is an unresolved phenomenon. RasGAPs and RapGAPs use different strategies to stimulate the GTPase reaction of their cognate G-proteins. RasGAPs contribute an arginine finger to orient through the Gln61 of Ras the nucleophilic water molecule. RapGAP contributes an asparagine (Asn thumb) into the active site to substitute for the missing Gln61. Here, by using steady-state kinetic assays and time-resolved Fourier-transform infrared spectroscopy (FTIR) experiments with wild type and mutant proteins, we unravel the remarkable mechanism for the specificity switch. The plasticity of GAP1(IP4BP) and RASAL is mediated by the extra GTPase-activating protein (GAP) domains, which promote a different orientation of Ras and Rap's switch-II and catalytic residues in the active site. Thereby, Gln63 in Rap adopts the catalytic role normally taken by Gln61 of Ras. This re-orientation requires specific interactions between switch-II of Rap and helix-alpha6 of GAPs. This supports the notion that the specificities of fl proteins versus GAP domains are potentially different.
Models, Molecular, GTPase-Activating Proteins, Molecular Sequence Data, Receptors, Cytoplasmic and Nuclear, Protein Structure, Tertiary, rap GTP-Binding Proteins, ras GTPase-Activating Proteins, Mutation, Spectroscopy, Fourier Transform Infrared, ras Proteins, Humans, Amino Acid Sequence, Guanosine Triphosphate, Protein Binding
Models, Molecular, GTPase-Activating Proteins, Molecular Sequence Data, Receptors, Cytoplasmic and Nuclear, Protein Structure, Tertiary, rap GTP-Binding Proteins, ras GTPase-Activating Proteins, Mutation, Spectroscopy, Fourier Transform Infrared, ras Proteins, Humans, Amino Acid Sequence, Guanosine Triphosphate, Protein Binding
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
