<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 25877358
Testis specific serine/threonine protein kinase 4 (TSSK4) belongs to the TSSK family, and its members play an important role in spermatogenesis and/or spermiogenesis. Mouse TSSK4 has been reported to be expressed exclusively in the testis and can maintain its kinase activity through autophosphorylation at Thr-197. However, its biological function remains poorly understood. Here we found that GFP-TSSK4-overexpressed HeLa cells showed apoptotic bodies, indicating TSSK4 can lead to apoptosis in vitro. Furthermore, TSSK4 induced apoptosis in different cell lines including HeLa, Cos-7 and H1299 tested by flow cytometry but not its kinase-dead mutant TSSK4-K54M. TSSK4 knockout mice showed increased testes weight and decreased apoptotic spermatogonia and spermatocytes at 21st day after birth tested by TUNEL technology. So TSSK4 was able to induce cell apoptosis in vitro depending on its kinase activity, which leads to abnormal testes weight and apoptosis, shedding light on its function in the process of spermatogenesis and/or spermiogenesis.
Male, Base Sequence, Apoptosis, Protein Serine-Threonine Kinases, Flow Cytometry, Polymerase Chain Reaction, Cell Line, Mice, In Situ Nick-End Labeling, Animals, Humans, DNA Primers
Male, Base Sequence, Apoptosis, Protein Serine-Threonine Kinases, Flow Cytometry, Polymerase Chain Reaction, Cell Line, Mice, In Situ Nick-End Labeling, Animals, Humans, DNA Primers
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |