<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The initial step in the acquisition of replication competence by eukaryotic chromosomes is the binding of the multisubunit origin recognition complex, ORC. We describe a transgenic Drosophila model which enables dynamic imaging of a green fluorescent protein (GFP)-tagged Drosophila melanogaster ORC subunit, DmOrc2-GFP. It is functional in genetic complementation, expressed at physiological levels, and participates quantitatively in complex formation. This fusion protein is therefore able to depict both the holocomplex DmOrc1-6 and the core complex DmOrc2-6 formed by the Drosophila initiator proteins. Its localization can be monitored in vivo along the cell cycle and development. DmOrc2-GFP is not detected on metaphase chromosomes but binds rapidly to anaphase chromatin in Drosophila embryos. Expression of either stable cyclin A, B, or B3 prevents this reassociation, suggesting that cessation of mitotic cyclin-dependent kinase activity is essential for binding of the DmOrc proteins to chromosomes.
Embryo, Nonmammalian, Recombinant Fusion Proteins, Genetic Complementation Test, Green Fluorescent Proteins, Intracellular Space, Origin Recognition Complex, Chromosomes, Cyclin-Dependent Kinases, Animals, Genetically Modified, Protein Transport, Drosophila melanogaster, Animals, Drosophila Proteins, Transgenes, Anaphase, Protein Binding
Embryo, Nonmammalian, Recombinant Fusion Proteins, Genetic Complementation Test, Green Fluorescent Proteins, Intracellular Space, Origin Recognition Complex, Chromosomes, Cyclin-Dependent Kinases, Animals, Genetically Modified, Protein Transport, Drosophila melanogaster, Animals, Drosophila Proteins, Transgenes, Anaphase, Protein Binding
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |