Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ParMAC: distributed optimisation of nested functions, with application to learning binary autoencoders

Authors: Carreira-Perpi����n, Miguel ��.; Alizadeh, Mehdi;

ParMAC: distributed optimisation of nested functions, with application to learning binary autoencoders

Abstract

Many powerful machine learning models are based on the composition of multiple processing layers, such as deep nets, which gives rise to nonconvex objective functions. A general, recent approach to optimise such "nested" functions is the method of auxiliary coordinates (MAC). MAC introduces an auxiliary coordinate for each data point in order to decouple the nested model into independent submodels. This decomposes the optimisation into steps that alternate between training single layers and updating the coordinates. It has the advantage that it reuses existing single-layer algorithms, introduces parallelism, and does not need to use chain-rule gradients, so it works with nondifferentiable layers. With large-scale problems, or when distributing the computation is necessary for faster training, the dataset may not fit in a single machine. It is then essential to limit the amount of communication between machines so it does not obliterate the benefit of parallelism. We describe a general way to achieve this, ParMAC. ParMAC works on a cluster of processing machines with a circular topology and alternates two steps until convergence: one step trains the submodels in parallel using stochastic updates, and the other trains the coordinates in parallel. Only submodel parameters, no data or coordinates, are ever communicated between machines. ParMAC exhibits high parallelism, low communication overhead, and facilitates data shuffling, load balancing, fault tolerance and streaming data processing. We study the convergence of ParMAC and propose a theoretical model of its runtime and parallel speedup. We develop ParMAC to learn binary autoencoders for fast, approximate image retrieval. We implement it in MPI in a distributed system and demonstrate nearly perfect speedups in a 128-processor cluster with a training set of 100 million high-dimensional points.

40 pages, 13 figures. The abstract appearing here is slightly shorter than the one in the PDF file because of the arXiv's limitation of the abstract field to 1920 characters

Keywords

FOS: Computer and information sciences, Optimization and Control (math.OC), FOS: Mathematics, Machine Learning (stat.ML), Distributed, Parallel, and Cluster Computing (cs.DC), Neural and Evolutionary Computing (cs.NE), Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!