
arXiv: 1006.4357
We obtain polynomial-time approximation-preserving reductions (up to a factor of 1 + ��) from the prize-collecting Steiner tree and prize-collecting Steiner forest problems in planar graphs to the corresponding problems in graphs of bounded treewidth. We also give an exact algorithm for the prize-collecting Steiner tree problem that runs in polynomial time for graphs of bounded treewidth. This, combined with our reductions, yields a PTAS for the prize-collecting Steiner tree problem in planar graphs and generalizes the PTAS of Borradaile, Klein and Mathieu for the Steiner tree problem in planar graphs. Our results build upon the ideas of Borradaile, Klein and Mathieu and the work of Bateni, Hajiaghayi and Marx on a PTAS for the Steiner forest problem in planar graphs. Our main technical result is on the properties of primal-dual algorithms for Steiner tree and forest problems in general graphs when they are run with scaled up penalties.
24 pages
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), F.2.2
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), F.2.2
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
