
pmid: 31924035
Hyaluronic acid (HA)-functionalized lanthanide-doped KGdF4 nanoparticles were synthesized through two steps on a microfluidic platform. This microfluidic synthesis method allows better control of experimental conditions with lower labor and energy input than traditional beaker synthesis methods for large-scale production of nanoparticles with higher uniformity. First, Ln3+-doped KGdF4 nanoparticles were ultrafast (in minutes) and continuously synthesized using a four-inlets microfluidic chip at room temperature. Then, HA is continuously functionalized on the surface of Ln3+-doped KGdF4 nanoparticles using a T-shape chip through electrostatic adsorption. The synthesized nanoparticles show good uniformity, high biocompatibility, targeted cellular uptake, photoluminescence (PL) and magnetic resonance (MR) properties. This work highlights the potential of microfluidic platform for the development of multifunctional nanoparticles in biomedicine.
Luminescence, Cell Survival, Microfluidics, Color, Gadolinium, Lanthanoid Series Elements, Dynamic Light Scattering, Cell Line, Tumor, Humans, Nanoparticles, Hyaluronic Acid, Particle Size
Luminescence, Cell Survival, Microfluidics, Color, Gadolinium, Lanthanoid Series Elements, Dynamic Light Scattering, Cell Line, Tumor, Humans, Nanoparticles, Hyaluronic Acid, Particle Size
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
