<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We study the fermion mass and mixing hierarchy problems within the context of the SU(5) 4+1d domain-wall brane model of Davies, George and Volkas. In this model, the ordinary fermion mass relations of SU(5) grand unified theories are avoided since the masses are proportional to overlap integrals of the profiles of the electroweak Higgs and the chiral components of each fermion, which are split into different 3+1d hyperplanes according to their hypercharges. We show that the fermion mass hierarchy without electroweak mixing can be generated naturally from these splittings, that generation of the CKM matrix looks promising, and that the Cabibbo angle along with the mass hierarchy can be generated for the case of Majorana neutrinos from a more modest hierarchy of parameters. We also show that under some assumptions made on the parameter space, the generation of realistic lepton mixing angles is not possible without fine-tuning, which argues for a flavour symmetry to enforce the required relations.
45 pages, ReVTeX4, 14 figures, 8 tables, references added, some minor adjustments and additions made;v4 some minor corrections to bibliography made
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |