Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.3...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.31230/osf.i...
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Estuarine Coastal and Shelf Science
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
MarXiv
Preprint . 2018
Data sources: MarXiv
Open Science Framework
Preprint . 2018
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mercury biomagnification through food webs along a salinity gradient down-estuary from a biological hotspot

Authors: Lange, Ted; Rumbold, Darren; DelPizzo, Gina; Hass, Nicole; Richards, Doug;

Mercury biomagnification through food webs along a salinity gradient down-estuary from a biological hotspot

Abstract

To examine down-estuary effects and how differences in food webs along a salinity gradient might influence mercury (Hg) biomagnification, we conducted a study from 2010 to 2015 in an estuary with a known biological hotspot at its headwaters. Over 907 samples of biota, representing 92 different taxa of fish and invertebrates, seston and sediments were collected from the upper, middle and lower reach for Hg determination and for stable nitrogen and carbon isotope analyses. Trophic magnification slopes (TMS; log Hg versus δ15N), as a measure of biomagnification efficiency, ranged from 0.23 to 0.241 but did not differ statistically among reaches. Hg concentrations were consistently highest, ranging as high as 4.9 mg/kg in top predatory fish, in the upper-reach of the estuary where basal Hg entering the food web was also highest, as evidenced by methylmercury concentrations in suspension feeders. Top predatory fish at the mouth of the estuary contained relatively low [THg], likely due to lower basal Hg. This was nonetheless surprising given the potential for down-estuary biotransport.

Keywords

bepress|Physical Sciences and Mathematics, Life Sciences, Marine Biology, bepress|Life Sciences|Marine Biology, bepress|Life Sciences, MarXiv|Physical Sciences and Mathematics, Physical Sciences and Mathematics, bepress|Physical Sciences and Mathematics|Environmental Sciences, MarXiv|Life Sciences|Marine Biology, MarXiv|Life Sciences, MarXiv|Physical Sciences and Mathematics|Environmental Sciences, Environmental Sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%
hybrid