<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract An intensive linkage map of the yellow fever mosquito, Aedes aegypti, was constructed using single-strand conformation polymorphism (SSCP) analysis of cDNA markers to identify single nucleotide polymorphisms (SNPs). A total of 94 A. aegypti cDNAs were downloaded from GenBank and primers were designed to amplify fragments <500 bp in size. These primer pairs amplified 94 loci, 57 (61%) of which segregated in a single F1 intercross family among 83 F2 progeny. This allowed us to produce a dense linkage map of one marker every 2 cM distributed over a total length of 134 cM. Many A. aegypti cDNAs were highly similar to genes in the Drosophila melanogaster genome project. Comparative linkage analysis revealed areas of synteny between the two species. SNP polymorphisms are abundant in A. aegypti genes and should prove useful in both population genetics and mapping studies.
Expressed Sequence Tags, Genetic Markers, DNA, Complementary, Genome, Base Sequence, Genotype, Genetic Linkage, Molecular Sequence Data, Chromosome Mapping, Aedes, Sequence Homology, Nucleic Acid, Animals, Crosses, Genetic, Polymorphism, Single-Stranded Conformational, Microsatellite Repeats
Expressed Sequence Tags, Genetic Markers, DNA, Complementary, Genome, Base Sequence, Genotype, Genetic Linkage, Molecular Sequence Data, Chromosome Mapping, Aedes, Sequence Homology, Nucleic Acid, Animals, Crosses, Genetic, Polymorphism, Single-Stranded Conformational, Microsatellite Repeats
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |