Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aperta - TÜBİTAK Açı...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aperta - TÜBİTAK Açık Arşivi
Other literature type . 2011
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computational Biology and Chemistry
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reconstruction and crosstalk of protein–protein interaction networks of Wnt and Hedgehog signaling in Drosophila melanogaster

Authors: Toku, Aysun Eren; Tekir, Saliha Durmus; Ozbayraktar, Fatma Betul Kavun; Ulgen, Kutlu O.;

Reconstruction and crosstalk of protein–protein interaction networks of Wnt and Hedgehog signaling in Drosophila melanogaster

Abstract

In the last few years, researchers have an intense interest in the evolutionarily conserved signaling pathways which have crucial roles during embryonic development. The most intriguing factor of this interest is that malfunctioning of these signaling pathways (Hedgehog, Notch, Wnt etc.) leads to several human diseases, especially to cancer. This study deals with the β-catenin dependent branch of Wnt signaling and the Hedgehog signaling pathways which offer potential targeting points for cancer drug development. The identification of all proteins functioning in these signaling networks is crucial for the efforts of preventing tumor formation. Here, through integration of protein-protein interaction data and Gene Ontology annotations, Wnt/β-catenin and Hedgehog signaling networks consisting of proteins that have statistically high probability of being biologically related to these signaling pathways were reconstructed in Drosophila melanogaster. Next, by the structural network analyses, the crucial components functioning in these pathways were identified. The proteins Arm, Frizzled receptors (Fz and Fz2), Arr, Apc, Axn, Ci and Ptc were detected as the key proteins in these networks. Futhermore, the hub protein Mer having tumor suppressor function may be proposed as a putative drug target for cancer and deserves further investigation via experimental methods. Finally, the crosstalk analysis between the reconstructed networks reveals that these two signaling networks crosstalk to each other.

Related Organizations
Keywords

Computational Biology, Molecular Sequence Annotation, Models, Biological, Wnt Proteins, Drosophila melanogaster, Neoplasms, Databases, Genetic, Animals, Drosophila Proteins, Hedgehog Proteins, Protein Interaction Maps, beta Catenin, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average
Green