
The CCA-adding enzyme repairs the 3'-terminal CCA sequence of all tRNAs. To determine how the enzyme recognizes tRNA, we probed critical contacts between tRNA substrates and the archaeal Sulfolobus shibatae class I and the eubacterial Escherichia coli class II CCA-adding enzymes. Both CTP addition to tRNA-C and ATP addition to tRNA-CC were dramatically inhibited by alkylation of the same tRNA phosphates in the acceptor stem and TPsiC stem-loop. Both enzymes also protected the same tRNA phosphates in tRNA-C and tRNA-CC. Thus the tRNA substrate must remain fixed on the enzyme surface during CA addition. Indeed, tRNA-C cross-linked to the S. shibatae enzyme remains fully active for addition of CTP and ATP. We propose that the growing 3'-terminus of the tRNA progressively refolds to allow the solitary active site to reuse a single CTP binding site. The ATP binding site would then be created collaboratively by the refolded CC terminus and the enzyme, and nucleotide addition would cease when the nucleotide binding pocket is full. The template for CCA addition would be a dynamic ribonucleoprotein structure.
Binding Sites, Base Sequence, Ethanol, Macromolecular Substances, Molecular Sequence Data, RNA Nucleotidyltransferases, Phosphates, Substrate Specificity, Sulfolobus, Cross-Linking Reagents, RNA, Transfer, Ethylnitrosourea, Enzyme Stability, Escherichia coli, Nucleic Acid Conformation
Binding Sites, Base Sequence, Ethanol, Macromolecular Substances, Molecular Sequence Data, RNA Nucleotidyltransferases, Phosphates, Substrate Specificity, Sulfolobus, Cross-Linking Reagents, RNA, Transfer, Ethylnitrosourea, Enzyme Stability, Escherichia coli, Nucleic Acid Conformation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 115 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
