<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 22415851
Endoplasmic reticulum (ER) stress has recently been identified as an important process involved in the pathology of pre-eclampsia (PE). Calreticulin (CRT) is an important ER resident protein which participates in the regulation of intracellular Ca(2+) homeostasis, cell adhesion, and cell apoptosis. In order to clarify the role of this protein in normal human pregnancy and in PE, this study has examined the expression of CRT in pre-eclamptic placenta compared with control placenta. The expression of CRT mRNA and protein was elevated in the pre-eclamptic placentas in comparison with control placentas. Furthermore, the expression level was related to the severity of symptoms experienced by PE patients. Therefore, this study aimed to identify the biological characteristics of the CRT gene in trophoblast cells. A CRT-expressing vector was transfected into the JEG-3 human choriocarcinoma cell line. Investigations showed that both proliferation and invasion were inhibited and apoptosis was promoted by CRT expression in JEG-3 cells. These data suggest that augmentation of CRT in the placenta may induce cell apoptosis and impair the invasion of extravillous trophoblast cells, thus leading to shallow placentation in PE.
Adult, Transcription, Genetic, Placenta, Cell Cycle, Apoptosis, Trophoblasts, Young Adult, Pre-Eclampsia, Cell Movement, Pregnancy, Cell Line, Tumor, Humans, Female, Calreticulin, Cell Proliferation
Adult, Transcription, Genetic, Placenta, Cell Cycle, Apoptosis, Trophoblasts, Young Adult, Pre-Eclampsia, Cell Movement, Pregnancy, Cell Line, Tumor, Humans, Female, Calreticulin, Cell Proliferation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |