Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://helda.helsin...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VIRTA
Conference object . 2020
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Russian trolls speaking Russian: Regional Twitter operations and MH17

Authors: Vesselkov, Alexandr; Finley, Benjamin; Vankka; Jouko;

Russian trolls speaking Russian: Regional Twitter operations and MH17

Abstract

The role of social media in promoting media pluralism was initially viewed as wholly positive. However, some governments are allegedly manipulating social media by hiring online commentators (also known as trolls) to spread propaganda and disinformation. In particular, an alleged system of professional trolls operating both domestically and internationally exists in Russia. In 2018, Twitter released data on accounts identified as Russian trolls, starting a wave of research. However, while foreign-targeted English language operations of these trolls have received significant attention, no research has analyzed their Russian language domestic and regional-targeted activities. We address this gap by characterizing the Russian-language operations of Russian trolls. We first perform a descriptive analysis, and then focus in on the trolls' operation related to the crash of Malaysia Airlines flight MH17. Among other things, we find that Russian-language trolls have run 163 hashtag campaigns (where hashtag use grows abruptly within a month). The main political sentiments of such campaigns were praising Russia and Putin (29%), criticizing Ukraine (26%), and criticizing the United States and Obama (9%). Further, trolls actively reshared information with 76% of tweets being retweets or containing a URL. Additionally, we observe periodic temporal patterns of tweeting suggesting that trolls use automation tools. Further, we find that trolls' information campaign on the MH17 crash was the largest in terms of tweet count. However, around 68% of tweets posted with MH17 hashtags were likely used simply for hashtag amplification. With these tweets excluded, about 49% of the tweets suggested to varying levels that Ukraine was responsible for the crash, and only 13% contained disinformation and propaganda presented as news. Interestingly, trolls promoted inconsistent alternative theories for the crash.

12th ACM Conference on Web Science (WebSci '20), July 6--10, 2020, Southampton, United Kingdom

Country
Finland
Keywords

ta520, Social and Information Networks (cs.SI), FOS: Computer and information sciences, Computer Science - Computers and Society, Computer and information sciences, informaatiosodankäynti, Computers and Society (cs.CY), Computer Science - Social and Information Networks

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green