Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal Of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal Of Pathology
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distinct Roles for Lymphotoxin-α and Tumor Necrosis Factor in the Control of Leishmania donovani Infection

Authors: Engwerda, Christian R.; Ato, Manabu; Stäger, Simona; Alexander, Clare E.; Stanley, Amanda C.; Kaye, Paul M.;

Distinct Roles for Lymphotoxin-α and Tumor Necrosis Factor in the Control of Leishmania donovani Infection

Abstract

Tumor necrosis factor (TNF) is critical for the control of visceral leishmaniasis caused by Leishmania donovani. However, the role of the related cytokine lymphotoxin (LT) alpha in this infection is unknown. Here we report that C57BL/6 mice deficient in TNF (B6.TNF(-/-)) or LT alpha (B6.LT alpha(-/-)) have increased susceptibility to hepatic L. donovani infection. Furthermore, the outcome of infection in bone marrow chimeric mice is dependent on donor hematopoietic cells, indicating that developmental defects in lymphoid organs were not responsible for increased susceptibility to L. donovani. Although both LT alpha and TNF regulated the migration of leukocytes into the sinusoidal area of the infected liver, their roles were distinct. LT alpha was essential for migration of leukocytes from periportal areas, an event consistent with LT alpha-dependent up-regulation of VCAM-1 on liver sinusoid lining cells, whereas TNF was essential for leukocyte recruitment to the liver. During visceral leishmaniasis, both cytokines were produced by radio-resistant cells and by CD4(+) T cells. LT alpha and TNF production by the former was required for granuloma assembly, while production of these cytokines by CD4(+) T cells was necessary to control parasite growth. The production of inducible nitric oxide synthase was also found to be deficient in TNF- and LT alpha-deficient infected mice. These results demonstrate that both LT alpha and TNF are required for control of L. donovani infection in noncompensatory ways.

Keywords

Anatomic pathology, CD4-Positive T-Lymphocytes, Male, Genes, RAG-1, Nitric Oxide Synthase Type II, Mice, Bone Marrow, Cell Movement, Leukocytes, Tumor necrosis factor α, Animals, Regulation(control), Protozoa, Kinetoplastida, Cytokine, Lymphotoxin-alpha, 11 Medical and Health Sciences, Lymphotoxin alpha, Homeodomain Proteins, Mice, Knockout, Granuloma, Tumor necrosis factor alpha, Lymphotoxin α, 1103 Clinical Sciences, Mice, Inbred C57BL, Liver, Leishmaniasis, Visceral, Female, Disease Susceptibility, Nitric Oxide Synthase, Infection, Leishmania donovani

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%
bronze