Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal Of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal Of Pathology
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Overlapping Roles of Endothelial Selectins and Vascular Cell Adhesion Molecule-1 in Immune Complex-Induced Leukocyte Recruitment in the Cremasteric Microvasculature

Authors: M Ursula, Norman; Nicholas C, Van De Velde; Jennifer R, Timoshanko; Andrew, Issekutz; Michael J, Hickey;

Overlapping Roles of Endothelial Selectins and Vascular Cell Adhesion Molecule-1 in Immune Complex-Induced Leukocyte Recruitment in the Cremasteric Microvasculature

Abstract

Many adhesion molecule pathways have been invoked as mediating leukocyte recruitment during immune complex-induced inflammation. However the individual roles of these molecules have not been identified via direct visualization of an affected microvasculature. Therefore, to identify the specific adhesion molecules responsible for leukocyte rolling and adhesion in immune complex-dependent inflammation we used intravital microscopy to examine postcapillary venules in the mouse cremaster muscle. Wild-type mice underwent an intrascrotal reverse-passive Arthus model of immune complex-dependent inflammation and subsequently, leukocyte-endothelial cell interactions and P- and E-selectin expression were assessed in cremasteric postcapillary venules. At 4 hours, the reverse-passive Arthus response induced a significant reduction in leukocyte rolling velocity and significant increases in adhesion and emigration. P-selectin expression was increased above constitutive levels whereas E-selectin showed a transient induction of expression peaking between 2.5 to 4 hours and declining thereafter. While E-selectin was expressed, rolling could only be eliminated by combined blockade of P- and E-selectin. However, by 8 hours, all rolling was P-selectin-dependent. In contrast, inhibition of vascular cell adhesion molecule-1 had a minimal effect on leukocyte rolling, but significantly reduced both adhesion and emigration. These observations demonstrate that immune complex-mediated leukocyte recruitment in the cremaster muscle involves overlapping roles for the endothelial selectins and vascular cell adhesion molecule-1.

Related Organizations
Keywords

Microcirculation, Vascular Cell Adhesion Molecule-1, Antigen-Antibody Complex, Up-Regulation, Mice, Inbred C57BL, Mice, P-Selectin, Arthus Reaction, Cell Adhesion, Leukocytes, Selectins, Animals, Endothelium, Vascular, E-Selectin, Abdominal Muscles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Average
Top 10%
Top 10%
bronze