Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2002 . Peer-reviewed
Data sources: Crossref
Development
Article . 2002
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Commissureless is required both in commissural neurones and midline cells for axon guidance across the midline

Authors: Georgiou, M; Tear, G;

Commissureless is required both in commissural neurones and midline cells for axon guidance across the midline

Abstract

In the absence of Commissureless (Comm) function, axons are unable to extend across the central nervous system midline. Comm downregulates levels of Roundabout (Robo), a receptor for the midline repellent Slit, in order to allow axons to cross the midline. comm transcript is expressed at high levels in the midline glia and Comm protein accumulates on axons at the midline. This has led to the hypothesis that Comm moves from the midline glia to the axons, where it can reduce Robo levels. We have found that expression of Comm in the midline cells is unable to rescue the comm phenotype and that tagged versions of Comm are not transferred to axons. A re-examination of Comm protein expression and the use of targeted RNA interference reveal that correct midline crossing requires that Comm is expressed in the commissural axons and midline glia. We suggest that accumulation of Comm protein at the midline spatially limits Comm activity and prevents it from being active on the contralateral side of the central nervous system.

Keywords

Central Nervous System, Embryonic Induction, Neurons, Embryo, Nonmammalian, Cell Survival, Roundabout Proteins, Green Fluorescent Proteins, 610, 500, Gene Expression Regulation, Developmental, Membrane Proteins, Nerve Tissue Proteins, Axons, Luminescent Proteins, Genetic Techniques, Mutation, Animals, Drosophila Proteins, RNA, Drosophila, Receptors, Immunologic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%
bronze