Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Expert Systems with ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Expert Systems with Applications
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CovH2SD: A COVID-19 detection approach based on Harris Hawks Optimization and stacked deep learning

Authors: Hossam Magdy Balaha; Eman M. El-Gendy; Mahmoud M. Saafan;

CovH2SD: A COVID-19 detection approach based on Harris Hawks Optimization and stacked deep learning

Abstract

Starting from Wuhan in China at the end of 2019, coronavirus disease (COVID-19) has propagated fast all over the world, affecting the lives of billions of people and increasing the mortality rate worldwide in few months. The golden treatment against the invasive spread of COVID-19 is done by identifying and isolating the infected patients, and as a result, fast diagnosis of COVID-19 is a critical issue. The common laboratory test for confirming the infection of COVID-19 is Reverse Transcription Polymerase Chain Reaction (RT-PCR). However, these tests suffer from some problems in time, accuracy, and availability. Chest images have proven to be a powerful tool in the early detection of COVID-19. In the current study, a hybrid learning and optimization approach named CovH2SD is proposed for the COVID-19 detection from the Chest Computed Tomography (CT) images. CovH2SD uses deep learning and pre-trained models to extract the features from the CT images and learn from them. It uses Harris Hawks Optimization (HHO) algorithm to optimize the hyperparameters. Transfer learning is applied using nine pre-trained convolutional neural networks (i.e. ResNet50, ResNet101, VGG16, VGG19, Xception, MobileNetV1, MobileNetV2, DenseNet121, and DenseNet169). Fast Classification Stage (FCS) and Compact Stacking Stage (CSS) are suggested to stack the best models into a single one. Nine experiments are applied and results are reported based on the Loss, Accuracy, Precision, Recall, F1-Score, and Area Under Curve (AUC) performance metrics. The comparison between combinations is applied using the Weighted Sum Method (WSM). Six experiments report a WSM value above 96.5%. The top WSM and accuracy reported values are 99.31% and 99.33% respectively which are higher than the eleven compared state-of-the-art studies.

Related Organizations
Keywords

Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 1%
Top 10%
Top 1%
Green
bronze