Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2009 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inhibitor κB Kinase β Deficiency in Primary Nociceptive Neurons Increases TRP Channel Sensitivity

Authors: Vanessa, Bockhart; Cristina Elena, Constantin; Annett, Häussler; Nina, Wijnvoord; Maike, Kanngiesser; Thekla, Myrczek; Geethanjali, Pickert; +8 Authors

Inhibitor κB Kinase β Deficiency in Primary Nociceptive Neurons Increases TRP Channel Sensitivity

Abstract

Inhibitor κB kinase (IKK) regulates the activity of the transcription factor nuclear factor-κ B that normally protects neurons against excitotoxicity. Constitutively active IKK is enriched at axon initial segments and nodes of Ranvier (NR). We used mice with a Cre–loxP-mediated specific deletion of IKKβ in sensory neurons of the dorsal root ganglion (SNS–IKKβ−/−) to evaluate whether IKK plays a role in sensory neuron excitability and nociception. We observed increased sensitivity to mechanical, cold, noxious heat and chemical stimulation inSNS–IKKβ−/−mice, with normal proprioceptive and motor functions as revealed by gait analysis. This was associated with increased calcium influx and increased inward currents in small- and medium-sized primary sensory neurons ofSNS–IKKβ−/−mice during stimulation with capsaicin or Formalin, specific activators of transient receptor potentials TRPV1 and TRPA1 calcium channels, respectively.In vitrostimulation of saphenous nerve preparations ofSNS–IKKβ−/−mice showed increased neuronal excitability of A- and C-fibers but unchanged A- and C-fiber conduction velocities, normal voltage-gated sodium channel currents, and normal accumulation of ankyrin G and the sodium channels Nav1.6 at NR. The results suggest that IKKβ functions as a negative modulator of sensory neuron excitability, mediated at least in part by modulation of TRP channel sensitivity.

Keywords

Ankyrins, Mice, Knockout, Nerve Fibers, Unmyelinated, Behavior, Animal, Neural Conduction, Nociceptors, Motor Activity, I-kappa B Kinase, Membrane Potentials, NAV1.8 Voltage-Gated Sodium Channel, Mice, Gene Expression Regulation, Area Under Curve, Ganglia, Spinal, Animals, Calcium, Capsaicin, Ion Channel Gating, Cells, Cultured, Pain Measurement

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Average
Top 10%
hybrid