Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Geochemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Geochemistry
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Arsenic mobility in two mine tailings drainage systems and its removal from solution by natural geochemical barriers

Authors: Nataliya V. Yurkevich; Olga P. Saeva; Nadezhda A. Pal’chik;

Arsenic mobility in two mine tailings drainage systems and its removal from solution by natural geochemical barriers

Abstract

Abstract Sulfide-mineral-bearing mill wastes are sources of high concentrations of acid, soluble metals, and As. These are serious problems for ore mining areas such as the Kemerovo and Cheljabinsk regions in Russia. This study evaluated the distribution of the mill wastes, the mobility of As from the wastes, and the potential of natural materials to attenuate As dispersion in the broader environment. Arsenic contents in wastes of the Belovo Zn-processing (Kemerovo) and the Karabash Cu-smelting plants (Cheljabinsk) are 2–3 orders of magnitude higher than the content of continental crust. Main mineral forms of As in these wastes are arsenopyrite (FeAsS) and scorodite (FeAsO 4 ·2H 2 O). High dissolved As concentrations are found in water draining the wastes and in rivers adjacent to the mill sites. The water concentrations commonly exceed drinking water standards. High As concentrations in bottom sediments of the affected rivers extend a 100 m downstream of the waste drainage input. These sediments are also a source of river water contamination. Experiments were conducted to evaluate the ability of natural water to mobilize As from the wastes. The Belovo tailings released 86% of their contained As to the infiltrating water, whereas the less reactive Karabash tailings released only 22% of total As. The experimental leachates were used as influent to columns that tested the ability of limestone and natural clay to reduce the concentration of dissolved As and associated metals. Some dissolved As was precipitated with Fe, Pb and Sb initially in the limestone column. The decrease in dissolved As is consistent with the accumulation of As in yellow ferriferous sediments in the Belovo settling pond. In the pond and wetland sediments, As mobility is also decreased by the formation of sulfides and arsenides. Cubanite (CuFe 2 S 3 ), klaprothite (Cu 3 BiS 3 ) , rammelsbergite (NiAs 2 ), maucherite (Ni 11 As 8 ), semseyite (Cu 9 Sb 8 S 21 ), and skutterudite (CoAs 3 ) were found in the chemically reducing lower sediments of the Belovo settling pond.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!