Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Research
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Matrix Metalloproteinase-9 Is Necessary for the Regulation of Smooth Muscle Cell Replication and Migration After Arterial Injury

Authors: Aesim, Cho; Michael A, Reidy;

Matrix Metalloproteinase-9 Is Necessary for the Regulation of Smooth Muscle Cell Replication and Migration After Arterial Injury

Abstract

Matrix metalloproteinases (MMPs) and, in particular, MMP-9 are important for smooth muscle cell (SMC) migration into the intima. In this study, we sought to determine whether MMP-9 is critical for SMC migration and for the formation of a neointima by using mice in which the gene was deleted (MMP-9 −/− mice). A denuding injury to the arteries of wild-type mice promoted the migration of medial SMCs into the neointima at 6 days, and a large neointimal lesion was observed after 28 days. In wild-type arteries, medial SMC replication was ≈8% at day 4, 6% at day 6, and 4% at day 8 and had further decreased to 1% at day 14. Intimal cell replication was 65% at 8 days and had decreased to ≈10% at 14 days after injury. In MMP-9 −/− arteries, SMC replication was significantly lower at day 8. In addition, SMC migration and arterial lesion growth were significantly impaired in MMP-9 −/− arteries. SMCs, isolated from MMP-9 −/− mouse arteries, showed an impairment of migration and replication in vitro. Thus, our present data indicate that MMP-9 is critical for the development of arterial lesions by regulating both SMC migration and proliferation.

Related Organizations
Keywords

Male, Mice, Knockout, Cell Count, Immunohistochemistry, Muscle, Smooth, Vascular, Catheterization, Enzyme Activation, Disease Models, Animal, Mice, Carotid Arteries, Matrix Metalloproteinase 9, Cell Movement, Disease Progression, Animals, Carotid Stenosis, Tunica Intima, Cell Division, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    293
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
293
Top 1%
Top 1%
Top 1%
bronze