Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preferential binding sites for interferon regulatory factors 3 and 7 involved in interferon-A gene transcription

Authors: Pierre, Morin; José, Bragança; Marie-Thérèse, Bandu; Rongtuan, Lin; John, Hiscott; Janine, Doly; Ahmet, Civas;

Preferential binding sites for interferon regulatory factors 3 and 7 involved in interferon-A gene transcription

Abstract

Transcription of the murine interferon-A4 (IFN-A4) gene is mediated by a virus responsive element (VRE-A4) located in the promoter proximal [-120 to -43] region. VRE-A4 contains four DNA modules (A to D) which cooperate for maximal IFN-A4 activation following virus infection. The differential expression between the highly expressed IFN-A4 and the weakly inducible IFN-A11 gene promoters is essentially due to point mutations within the C and D modules of the virus-responsive element VRE-A11. We now demonstrate that in murine L929 and human 293 cells, transcription factors IRF-3 and IRF-7, which are potent activators of virus-induced type I IFN transcription, differentially affect IFN-A4 and IFN-A11 promoter activities. Using electrophoretic mobility shift assays and DNase I footprinting data, our studies demonstrate that the AB modules correspond to a preferential site for IRF-7, whereas the C module is preferentially recognized by IRF-3. Furthermore, transfection of reporter constructs driven by four copies of different GAAANN hexameric motifs found within VRE-A4 indicates that the NN residues of these hexameric sequences define the preferential binding sites for IRF-3 or IRF-7. Together, these experiments clarify the molecular basis for differential expression of IFN-A genes following virus infection by delineating the sequence requirements for IRF association with the virus responsive elements of the IFN-A genes.

Keywords

Binding Sites, Base Sequence, Transcription, Genetic, Interferon Regulatory Factor-7, Molecular Sequence Data, DNA Footprinting, Interferon-alpha, Electrophoretic Mobility Shift Assay, Response Elements, Cell Line, DNA-Binding Proteins, Mice, Gene Expression Regulation, Mutation, Animals, Deoxyribonuclease I, Humans, Interferon Regulatory Factor-3, Promoter Regions, Genetic, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!