Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Protein import into mitochondria: origins and functions today (Review)

Authors: Joanne M Hulett; Trevor Lithgow; James Whelan; Ryan Lister;

Protein import into mitochondria: origins and functions today (Review)

Abstract

Mitochondria are organelles derived from alpha-proteobacteria over the course of one to two billion years. Mitochondria from the major eukaryotic lineages display some variation in functions and coding capacity but sequence analysis demonstrates them to be derived from a single common ancestral endosymbiont. The loss of assorted functions, the transfer of genes to the nucleus, and the acquisition of various 'eukaryotic' proteins have resulted in an organelle that contains approximately 1000 different proteins, with most of these proteins imported into the organelle across one or two membranes. A single translocase in the outer membrane and two translocases in the inner membrane mediate protein import. Comparative sequence analysis and functional complementation experiments suggest some components of the import pathways to be directly derived from the eubacterial endosymbiont's own proteins, and some to have arisen 'de novo' at the earliest stages of 'mitochondrification' of the endosymbiont. A third class of components appears lineage-specific, suggesting they were incorporated into the process of protein import long after mitochondria was established as an organelle and after the divergence of the various eukaryotic lineages. Protein sorting pathways inherited from the endosymbiont have been co-opted and play roles in intraorganelle protein sorting after import. The import apparatus of animals and fungi show significant similarity to one another, but vary considerably to the plant apparatus. Increasing complexity in the eukaryotic lineage, i.e., from single celled to multi-cellular life forms, has been accompanied by an expansion in genes encoding each component, resulting in small gene families encoding many components. The functional differences in these gene families remain to be elucidated, but point to a mosaic import apparatus that can be regulated by a variety of signals.

Keywords

Evolution, Molecular, Fungal Proteins, Mitochondrial Proteins, Protein Transport, Bacterial Proteins, Yeasts, Membrane Proteins, Membrane Transport Proteins, Bacterial Physiological Phenomena, Mitochondria

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?