
arXiv: 2007.00767
Neural Processes (NPs) families encode distributions over functions to a latent representation, given context data, and decode posterior mean and variance at unknown locations. Since mean and variance are derived from the same latent space, they may fail on out-of-domain tasks where fluctuations in function values amplify the model uncertainty. We present a new member named Neural Processes with Position-Relevant-Only Variances (NP-PROV). NP-PROV hypothesizes that a target point close to a context point has small uncertainty, regardless of the function value at that position. The resulting approach derives mean and variance from a function-value-related space and a position-related-only latent space separately. Our evaluation on synthetic and real-world datasets reveals that NP-PROV can achieve state-of-the-art likelihood while retaining a bounded variance when drifts exist in the function value.
10 pages, 5 figures
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Machine Learning (stat.ML), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Machine Learning (stat.ML), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
