Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
ResearchGate Data
Preprint . 2020
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

NP-PROV: Neural Processes with Position-Relevant-Only Variances

Authors: Wang, Xuesong; Yao, Lina; Wang, Xianzhi; Nie, Feiping;

NP-PROV: Neural Processes with Position-Relevant-Only Variances

Abstract

Neural Processes (NPs) families encode distributions over functions to a latent representation, given context data, and decode posterior mean and variance at unknown locations. Since mean and variance are derived from the same latent space, they may fail on out-of-domain tasks where fluctuations in function values amplify the model uncertainty. We present a new member named Neural Processes with Position-Relevant-Only Variances (NP-PROV). NP-PROV hypothesizes that a target point close to a context point has small uncertainty, regardless of the function value at that position. The resulting approach derives mean and variance from a function-value-related space and a position-related-only latent space separately. Our evaluation on synthetic and real-world datasets reveals that NP-PROV can achieve state-of-the-art likelihood while retaining a bounded variance when drifts exist in the function value.

10 pages, 5 figures

Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Machine Learning (stat.ML), Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green