<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 25037351
An extracellular pectate lyase was purified and characterized from a UV mutant of Bacillus tequilensis SV11. Purification resulted in a 16.2-fold improvement in the enzyme specific activity, with approximately 40.2% yield. SDS-PAGE showed that the enzyme had two subunits with molecular masses of 135 ± 2 and 43 ± 2 kDa. Further, MALDI-TOF MS experiments revealed that the mass spectrum of the second peptide significantly (91% score) matched with the unsaturated rhamnogalacturonyl hydrolase YteR OS-Bacillus subtilis (strain 168) by 27% sequence coverage, nominal mass 43,231 Da, and PI 5.91. The enzyme was optimally active at 60 °C, pH 9. Km and Vmax of the purified pectate lyase was found to be 1.220 mg/mL and 1773 U/mL, respectively. The enzyme was studied for its applicability in bioscouring and found to be efficient in the removal of 97.91% pectin of cotton fabric when compared with alkali-treated fabric.
Hot Temperature, Textile Industry, Enzyme Stability, Bacillus, Polysaccharide-Lyases
Hot Temperature, Textile Industry, Enzyme Stability, Bacillus, Polysaccharide-Lyases
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |