
The explosive spread of the devices connected to the Internet has increased the need for efficient and portable cryptographic routines. Despite this fact, truly platformindependent implementations are still hard to find. In this paper, an Identitybased Cryptography library, called CryptID is introduced. The main goal of this library is to provide an efficient and opensource IBC implementation for the desktop, the mobile, and the IoT platforms. Powered by WebAssembly, which is a specification aiming to securely speed up code execution in various embedding environments, CryptID can be utilized on both the client and the server-side. The second novelty of CrpytID is the use of structured public keys, opening up a wide range of domain-specific use cases via arbitrary metadata embedded into the public key. Embedded metadata can include, for example, a geolocation value when working with geolocation-based Identitybased Cryptography, or a timestamp, enabling simple and efficient generation of singleuse keypairs. Thanks to these characteristics, we think, that CryptID could serve as a real alternative to the current Identitybased Cryptography implementations.
QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány
QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
