Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY NC ND
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Learning Transferable Adversarial Robust Representations via Multi-view Consistency

Authors: Kim, Minseon; Ha, Hyeonjeong; Lee, Dong Bok; Hwang, Sung Ju;

Learning Transferable Adversarial Robust Representations via Multi-view Consistency

Abstract

Despite the success on few-shot learning problems, most meta-learned models only focus on achieving good performance on clean examples and thus easily break down when given adversarially perturbed samples. While some recent works have shown that a combination of adversarial learning and meta-learning could enhance the robustness of a meta-learner against adversarial attacks, they fail to achieve generalizable adversarial robustness to unseen domains and tasks, which is the ultimate goal of meta-learning. To address this challenge, we propose a novel meta-adversarial multi-view representation learning framework with dual encoders. Specifically, we introduce the discrepancy across the two differently augmented samples of the same data instance by first updating the encoder parameters with them and further imposing a novel label-free adversarial attack to maximize their discrepancy. Then, we maximize the consistency across the views to learn transferable robust representations across domains and tasks. Through experimental validation on multiple benchmarks, we demonstrate the effectiveness of our framework on few-shot learning tasks from unseen domains, achieving over 10\% robust accuracy improvements against previous adversarial meta-learning baselines.

*Equal contribution (Author ordering determined by coin flip). NeurIPS SafetyML workshop 2022, Under review

Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green