Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2014
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

$(1, k)$-coloring of graphs with girth at least $5$ on a surface

Authors: Choi, Hojin; Choi, Ilkyoo; Jeong, Jisu; Suh, Geewon;

$(1, k)$-coloring of graphs with girth at least $5$ on a surface

Abstract

A graph is $(d_1, ..., d_r)$-colorable if its vertex set can be partitioned into $r$ sets $V_1, ..., V_r$ so that the maximum degree of the graph induced by $V_i$ is at most $d_i$ for each $i\in \{1, ..., r\}$. For a given pair $(g, d_1)$, the question of determining the minimum $d_2=d_2(g; d_1)$ such that planar graphs with girth at least $g$ are $(d_1, d_2)$-colorable has attracted much interest. The finiteness of $d_2(g; d_1)$ was known for all cases except when $(g, d_1)=(5, 1)$. Montassier and Ochem explicitly asked if $d_2(5; 1)$ is finite. We answer this question in the affirmative with $d_2(5; 1)\leq 10$; namely, we prove that all planar graphs with girth at least $5$ are $(1, 10)$-colorable. Moreover, our proof extends to the statement that for any surface $S$ of Euler genus $��$, there exists a $K=K(��)$ where graphs with girth at least $5$ that are embeddable on $S$ are $(1, K)$-colorable. On the other hand, there is no finite $k$ where planar graphs (and thus embeddable on any surface) with girth at least $5$ are $(0, k)$-colorable.

14 pages, 4 figures

Keywords

FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green