
doi: 10.1101/gad.1211604
pmid: 15314019
Mammalian epithelial tumors lose polarity as they progress toward malignancy, but whether polarity loss might causally contribute to cancer has remained unclear. In Drosophila, mutations in the “neoplastic tumor suppressor genes” (nTSGs) scribble, discs-large, and lethal giant larvae disrupt polarity of epithelia and neuroblasts, and simultaneously induce extensive overproliferation of these cells, which exhibit malignant-like characteristics. Herein I review what is known about the role of the fly nTSGs in controlling cell polarity and cell proliferation. Incorporating data from mammalian studies, I consider how polarity and proliferation can be coupled, and how disruption of polarity could promote cancer.
Animals, Cell Polarity, Drosophila, Genes, Tumor Suppressor, Cell Division
Animals, Cell Polarity, Drosophila, Genes, Tumor Suppressor, Cell Division
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 519 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
