
doi: 10.2118/163931-ms
Abstract Coiled tubing (CT) is invaluable equipment in shale oil/gas completion operations. From well cleanout to perforating and fracturing operations, CT does it all. However, with the boom in shale oil/gas development and the number of wells required to develop these unconventional resources, demand and cost for CT can be high and often availability can be limited. In an effort to reduce completion costs and minimize CT use, reserving it for only those tasks that absolutely require it, an operator in the Eagle Ford shale decided to investigate alternative technologies for performing post-cementing well cleanup and toe perforating. The operator was aware of an electric-line (e-line), tractor-conveyed cleaning tool with a reverse circulating bit (RCB) that was being used for drifting and cleanout runs. These tools have been used successfully in Norway and Canada, offshore and on land, to clean out cement stringers and other debris from the wellbore, ensuring a clear path for the toe perforations, which follow. With these tasks successfully completed, the pumping down of frac plugs can be accomplished with confidence during multi-stage completion operations. The operator decided to try the e-line technology on a five-well pilot project of cased, horizontal wells in the Eagle Ford development. This was the first time the technology was used in U.S. land operations. The e-line cleaning tool cleaned the wells, and the tractor-conveyed perforating guns reached the depth cleaned out by the e-line cleaning tool. On this pilot project, the average field time per well for an e-line cleanout and tractor-conveyed toe perforation was 24 hours. The pilot test was considered a success. This paper discusses the details of the project and tool operations for each well, and the lessons learned and applied to each successive well in the pilot to develop a successful strategy for using these tools across a broad range of operating conditions.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
