Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The muscarinic M3 acetylcholine receptor exists as two differently sized complexes at the plasma membrane

Authors: Elisa Alvarez-Curto; Suparna Patowary; Julie A. Oliver; Jessica D. Holz; Valerica Raicu; Graeme Milligan; Tian-Rui Xu;

The muscarinic M3 acetylcholine receptor exists as two differently sized complexes at the plasma membrane

Abstract

The literature on GPCR (G-protein-coupled receptor) homo-oligomerization encompasses conflicting views that range from interpretations that GPCRs must be monomeric, through comparatively newer proposals that they exist as dimers or higher-order oligomers, to suggestions that such quaternary structures are rather ephemeral or merely accidental and may serve no functional purpose. In the present study we use a novel method of FRET (Förster resonance energy transfer) spectrometry and controlled expression of energy donor-tagged species to show that M3Rs (muscarinic M3 acetylcholine receptors) at the plasma membrane exist as stable dimeric complexes, a large fraction of which interact dynamically to form tetramers without the presence of trimers, pentamers, hexamers etc. That M3R dimeric units interact dynamically was also supported by co-immunoprecipitation of receptors synthesized at distinct times. On the basis of all these findings, we propose a conceptual framework that may reconcile the conflicting views on the quaternary structure of GPCRs.

Keywords

Models, Molecular, Receptor, Muscarinic M3, HEK293 Cells, Protein Stability, Recombinant Fusion Proteins, Cell Membrane, Fluorescence Resonance Energy Transfer, Humans, Protein Multimerization, Protein Structure, Quaternary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?