Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.researchsquare.com...
Article
License: CC BY
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Low Complexity STPAP Algorithm based on Alternating Polarization Sensitive Array

Authors: Shuang Sha; Tingting Lyu; Hao Zhang; T. Aaron Gulliver;

A Low Complexity STPAP Algorithm based on Alternating Polarization Sensitive Array

Abstract

Abstract Background: Space-time adaptive processing (STAP) has been widely used in the fields of communication, radar, and navigation anti-jamming. However, the traditional scalar array used by STAP has certain limitations,because it can only obtain spatial information. In order to further improve the performance of the space-time domain joint filtering technology, this paper replaces the traditional scalar array with an alternating polarization sensitive array (APSA). Compared with the dual polarization sensitive array (DPSA), it can not only obtain the polarization information of the signal, but also reduce the computational complexity of the algorithm. Methods: Using the polarization information of the signals, this paper realizes an alternate polarization sensitive array space-time-polarization adaptive processing algorithm (APSA-STPAP) based on the linear variance minimum criterion (LCMV). Different from the traditional LCMV criterion, this paper takes the space-time polarization joint steering vector of the desired signal and the interference signal as the constraint matrix, and uses the "1 condition" and "zero condition" as the constraint conditions to effectively suppress the interference signal and enhance the expectation signal. Results: The simulation results show that: (1) APSA-STPAP algorithm can achieve the same filtering effect as DPSA-STPAP algorithm. From the perspective of the spatial domain, time domain and polarization domain, it can form null in the direction of interference, effectively suppress the interference signal, and realize space-time-polarization adaptive processing. (2) Under the same conditions, APSA-STPAP algorithm can achieve the same filtering effect as DPSA-STPAP algorithm. there is a big difference between the two algorithms, APSA-STPAP algorithm can effectively reduce the amount of computation. Moreover, the dipole of alternating polarization sensitive array is halved, which reduces the coupling effect between electric dipoles, and is conducive to engineering implementation. (3) APSA-STPAP algorithm can maintain good anti-interference performance even when the electric dipole and anti-jamming degree of freedom are reduced by half, and its anti-jamming performance is similar to that of polarization sensitive array. The output SINR of DPSA-STPAP algorithm is about 3dB higher than that of APSA-STPAP algorithm. There is little difference between the anti- interference performance of APSA and DPSA.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid
Related to Research communities