Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Biom...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Biomedical and Health Informatics
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Association Mining to Identify Microbe Drug Interactions Based on Heterogeneous Network Embedding Representation

Authors: Yahui Long; Jiawei Luo;

Association Mining to Identify Microbe Drug Interactions Based on Heterogeneous Network Embedding Representation

Abstract

Accurately identifying microbe-drug associations plays a critical role in drug development and precision medicine. Considering that the conventional wet-lab method is time-consuming, labor-intensive and expensive, computational approach is an alternative choice. The increasing availability of numerous biological data provides a great opportunity to systematically understand complex interaction mechanisms between microbes and drugs. However, few computational methods have been developed for microbe drug prediction. In this work, we leverage multiple sources of biomedical data to construct a heterogeneous network for microbes and drugs, including drug-drug interactions, microbe-microbe interactions and microbe-drug associations. And then we propose a novel Heterogeneous Network Embedding Representation framework for Microbe-Drug Association prediction, named (HNERMDA), by combining metapath2vec with bipartite network recommendation. In this framework, we introduce metapath2vec, a heterogeneous network representation learning method, to learn low-dimensional embedding representations for microbes and drugs. Following that, we further design a bias bipartite network projection recommendation algorithm to improve prediction accuracy. Comprehensive experiments on two datasets, named MDAD and aBiofilm, demonstrated that our model consistently outperformed five baseline methods in three types of cross-validations. Case study on two popular drugs (i.e., Ciprofloxacin and Pefloxacin) further validated the effectiveness of our HNERMDA model in inferring potential target microbes for drugs.

Related Organizations
Keywords

Humans, Drug Interactions, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!