
The memory storage technology revolution has taken the consumer electronics by a storm in just two years. The volatile memory Dynamic Random Access Memory (DRAM) for PC and notebook computing and gaming are increasing in density and speed. With all these improvement, the memory device packaging technology is also evolving rapidly, from the leadframe packages to BGA packages [2]. Under high frequency operation, the parasitics associated with package will significantly degrade the package performance. The DRAM packages are used primarily in the fabrication of DIMM modules that are inserted to the motherboards in PC and notebook computers. With newer DRAM technology in double date rate (DDR) and its second generation, DDR2, to be deployed just two years, it has higher clock rate and I/O number. Packages therefore are changing form the leadframe TSOP type 2 to faster CSPs such as fine pitch BGA (FBGA) and chip on substrate BGA (COSBGA). This paper is focused the COSBGA package [3,4]. In this paper, the packages electrical model have been established and performs signal integrity (SI) simulation. The COSBGA has smallest parasitics when comparison with other two packages. This paper also compares the performance of the COSBGA, TFBGA and TSOPII from crosstalk noise, time skew, insertion loss and return loss for IC designer reference.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
