Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Construction of conveyor lifts on the sides of pits

Authors: V. A. Bersenev; A. V. Semenkin; I. G. Sumina;

Construction of conveyor lifts on the sides of pits

Abstract

This article is devoted to the placement of steeply inclined conveyors in quarries that develop deep-lying, steep-falling mineral deposits, which have small dimensions in terms of. The analysis of the application of cyclic-flow technology (CFT) with a belt conveyor is carried out. A review of known methods for the construction of traditional conveyor belts on the sides of the quarries. For quarries that are small in size, there is a restriction on the use of belt conveyors: the absence of straight sections for their location. In such quarries it is effective to use steeply inclined conveyors (with pressure tape, tubular, Pocketlift, etc.). The conveyor is positioned so that its tail section is mounted on a horizontal berm along the ledge of the pit side from the lying side of the mineral deposit. This placement eliminates the need for conservation of the pillar of rocks with part of the mineral. A technical and economic comparison of the options for using a steeply inclined conveyor with a clamping belt and an excavator-automobile complex (EAС) is carried out in relation to the conditions of a real quarry. Costs were calculated at heights of 400 and 470 meters with a change in the annual productivity of the complexes from 1 to 20 million tons / year. The dependences of changes in costs for the use of a complex of cyclic-flow technology and an excavator-automobile complex are established with marked changes in productivity and height of the rock mass.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!