Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

p63α Mutations Lead to Aberrant Splicing of Keratinocyte Growth Factor Receptor in the Hay-Wells Syndrome

Authors: Ozlem Topaloglu; Motonobo Osada; Eugene Yuriditsky; Alexey Fomenkov; Yi Ping Huang; Anna Brechman; Edward A. Ratovitski; +3 Authors

p63α Mutations Lead to Aberrant Splicing of Keratinocyte Growth Factor Receptor in the Hay-Wells Syndrome

Abstract

p63, a p53 family member, is required for craniofacial and limb development as well as proper skin differentiation. However, p63 mutations associated with the ankyloblepharon-ectodermal dysplasia-clefting (AEC) syndrome (Hay-Wells syndrome) were found in the p63 carboxyl-terminal region with a sterile alpha-motif. By two-hybrid screen we identified several proteins that interact with the p63alpha carboxyl terminus and its sterile alpha-motif, including the apobec-1-binding protein-1 (ABBP1). AEC-associated mutations completely abolished the physical interaction between ABBP1 and p63alpha. Moreover the physical association of p63alpha and ABBP1 led to a specific shift of FGFR-2 alternative splicing toward the K-SAM isoform essential for epithelial differentiation. We thus propose that a p63alpha-ABBP1 complex differentially regulates FGFR-2 expression by supporting alternative splicing of the K-SAM isoform of FGFR-2. The inability of mutated p63alpha to support this splicing likely leads to the inhibition of epithelial differentiation and, in turn, accounts for the AEC phenotype.

Related Organizations
Keywords

Membrane Proteins, RNA-Binding Proteins, Cell Differentiation, Epithelial Cells, Phosphoproteins, DNA-Binding Proteins, Mice, Gene Expression Regulation, Ectodermal Dysplasia, Heterogeneous-Nuclear Ribonucleoprotein Group A-B, Mutation, Animals, Humans, Protein Isoforms, Protein Splicing, Abnormalities, Multiple, Genes, Tumor Suppressor, Mouth Abnormalities, Receptor, Fibroblast Growth Factor, Type 2, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
gold