
arXiv: 1612.09298
Topological Quantum Field Theories (TQFTs) pertinent to some emergent low energy phenomena of condensed matter lattice models in 2+1 and 3+1D are explored. Many of our field theories are highly-interacting without free quadratic analogs. Some of our bosonic TQFTs can be regarded as the continuum field theory formulation of Dijkgraaf-Witten twisted discrete gauge theories. Other bosonic TQFTs beyond the Dijkgraaf-Witten description and all fermionic spin TQFTs are either higher-form gauge theories where particles must have strings attached, or fermionic discrete gauge theories obtained by gauging the fermionic Symmetry-Protected Topological states (SPTs). We calculate both Abelian and non-Abelian braiding statistics data of anyon particle and string excitations, where the statistics data can one-to-one characterize the underlying topological orders of TQFTs. We derive path integral expectation values of links formed by line and surface operators in the TQFTs. The acquired link invariants include not only the Aharonov-Bohm linking number, but also Milnor triple linking number in 2+1D, triple and quadruple linking numbers of surfaces, and intersection number of surfaces in 3+1D. We also construct new spin TQFTs with the corresponding knot/link invariants of Arf(-Brown-Kervaire), Sato-Levine and others. We propose a new relation between the fermionic SPT partition function and Rokhlin invariant. We can use these invariants and other observables, including ground state degeneracy, reduced modular $\mathcal{S}^{xy}$ and $\mathcal{T}^{xy}$ matrices, and the partition function on $\mathbb{RP}^3$ manifold, to identify all $\mathbb{Z}_8$ classes of 2+1D gauged $\mathbb{Z}_2$-Ising-symmetric $\mathbb{Z}_2^f$-fermionic Topological Superconductors (TSC, realized by stacking layers of a pair of $p+ip$ and $p-ip$ SC, where boundary supports non-chiral Majorana-Weyl modes) with continuum spin-TQFTs.
41 pages, 9 figures, 3 tables. On 2+1D and 3+1D TQFTs / spin TQFTs. v4 journal: Remarks and Refs added
High Energy Physics - Theory, Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences, Geometric Topology (math.GT), Mathematical Physics (math-ph), Condensed Matter - Strongly Correlated Electrons, Mathematics - Geometric Topology, High Energy Physics - Theory (hep-th), Many-body theory; quantum Hall effect, FOS: Mathematics, Topological field theories in quantum mechanics, Mathematical Physics
High Energy Physics - Theory, Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences, Geometric Topology (math.GT), Mathematical Physics (math-ph), Condensed Matter - Strongly Correlated Electrons, Mathematics - Geometric Topology, High Energy Physics - Theory (hep-th), Many-body theory; quantum Hall effect, FOS: Mathematics, Topological field theories in quantum mechanics, Mathematical Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 99 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
