
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Abstract Background Osteoporosis is related to the number and activity of osteoclasts. The goal of the present study was to demonstrate the effect of Chaenomelis Fructus (CF) on osteoclastogenesis and its mechanism of bone loss prevention in an OVX-induced osteoporosis model. Methods Osteoclasts were induced by RANKL in RAW 264.7 cells. TRAP assay was performed to measure the inhibitory effect of CF on osteoclast differentiation. Then, Expression of nuclear factor of activated T-cells (NFATc1), c-Fos which are essential transcription factors in osteoclastogenesis were detected using western blot and RT-PCR. The osteoclast-related markers were measured by RT-PCR. Moreover, the ability of CF to inhibit bone loss was researched by ovariectomized (OVX)-induced osteoporosis. Results Cell experiments showed that CF inhibited osteoclast differentiation and its function. Immunoblot analyses demonstrated that CF suppressed osteoclastogenesis through the NFATc1 and c-Fos signaling pathways. RT-PCR determined that CF inhibited osteoclast-related markers, such as tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTK), osteoclast-associated immunoglobulin-like receptor (OSCAR), ATPase H+ Transporting V0 Subunit D2 (ATP6v0d2) and carbonic anhydrase II (CA2). In animal experiments, CF showed an inhibitory effect on bone density reduction through OVX. Hematoxylin and eosin (H&E) staining analysis data showed that CF inhibited OVX-induced trabecular area loss. TRAP staining and immunohistochemical staining analysis data showed that CF displayed an inhibitory effect on osteoclast differentiation through NFATc1 inhibition in femoral tissue. Conclusion Based on the results of in vivo and in vitro experiments, CF inhibited the RANKL-induced osteoclasts differentiation and its function and effectively ameliorated OVX-induced osteoporosis rats.
Ovariectomy, Blotting, Western, NFATc1, Osteoclasts, Rats, Sprague-Dawley, Other systems of medicine, Mice, Postmenopausal osteoporosis, Bone Density, Osteogenesis, Animals, Femur, Rosaceae, NFATC Transcription Factors, Plant Extracts, RANKL, Cell Differentiation, Disease Models, Animal, Chaenomelis Fructus, RAW 264.7 Cells, Fruit, Osteoclast, Osteoporosis, Female, RZ201-999, Research Article
Ovariectomy, Blotting, Western, NFATc1, Osteoclasts, Rats, Sprague-Dawley, Other systems of medicine, Mice, Postmenopausal osteoporosis, Bone Density, Osteogenesis, Animals, Femur, Rosaceae, NFATC Transcription Factors, Plant Extracts, RANKL, Cell Differentiation, Disease Models, Animal, Chaenomelis Fructus, RAW 264.7 Cells, Fruit, Osteoclast, Osteoporosis, Female, RZ201-999, Research Article
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
