Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Other literature type . 2025
License: CC BY
Data sources: Datacite
ZENODO
Other literature type . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Cube Root Approach to Integer Partition Approximation: Consistent Performance Across Practical Ranges

Authors: Naladiga Venkat, Arvind;

A Cube Root Approach to Integer Partition Approximation: Consistent Performance Across Practical Ranges

Abstract

SUPERSEDED VERSION: This is an early, exploratory version of this research based on empirical fitting and contained minor errors in the code. This work has been entirely superseded by a new paper that provides a full theoretical derivation. Check it out at https://zenodo.org/records/17110539This paper presents a novel computational method for approximating the integer partition function p(n) using central binomial coefficients. The approach is based on systematic analysis of the cube root ratio ∛(C(n,⌊n/2⌋)/p(n)), which reveals underlying polynomial structure amenable to empirical modeling. Key contributions include: Consistent 0.4-2% accuracy across n ∈ [4, 80,000] spanning five orders of magnitude Discovery of empirical coefficients corresponding to fundamental mathematical constants ln(2)/3, π√6/9, and 1/6 with 99.98-99.996% agreement Superior performance compared to Hardy-Ramanujan approximation, with improvement factors of 13-87× for n ≤ 70,000 (covering 99.9% of practical applications) Numerical stability and implementation simplicity using only elementary functions The work demonstrates how systematic computational exploration can reveal hidden mathematical structure in classical combinatorial problems while providing practical approximation tools with predictable error characteristics. The remarkable correspondence between fitted coefficients and established mathematical constants suggests deep theoretical relationships warranting further investigation. Keywords: integer partitions, binomial coefficients, approximation algorithms, mathematical constants, Hardy-Ramanujan formula, computational mathematics --- Files This upload contains the following files: PartitionFormsPerformanceComparison.py - Python script comparing performance of all our approximation methods against the Hardy-Ramanujan formula error_summary.csv - Comprehensive error rate comparison data across all tested ranges fig_performance_charts.png - High-resolution performance visualization chart from Figure 1 in the paper. cube-root-partition-approximation.pdf - Complete research paper with mathematical framework and results Licensing Source code (Python script): MIT License All other files): CC Attribution 4.0 International 

Keywords

computational mathematics, asymptotic analysis, Hardy-Ramanujan formula, partition function, integer partitions, numerical methods, binomial coefficients, approximation algorithms, mathematical constants

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!