Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Insect Ph...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Insect Physiology
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immune gene transcription in Drosophila adult flies infected by entomopathogenic nematodes and their mutualistic bacteria

Authors: U. Shokal; Julio Cesar Castillo; Ioannis Eleftherianos;

Immune gene transcription in Drosophila adult flies infected by entomopathogenic nematodes and their mutualistic bacteria

Abstract

Despite impressive advances in the broad field of insect innate immunity, our understanding of the molecular basis of insect immune responses to nematode infections remains incomplete. Here we have investigated the transcriptional induction of immune pathway genes in the fruit fly Drosophila melanogaster upon infection with the entomopathogenic (or insect pathogenic) nematodes Heterorhabditis bacteriophora and their mutualistic bacteria Photorhabdus luminescens, either collectively or separately. We show that in most cases, infection of wild-type adult flies with Heterorhabditis nematodes carrying or lacking mutualistic Photorhabdus bacteria results in the up-regulation of genes in the Toll, Imd, JAK/STAT, JNK and TGF-beta pathways. We also find that direct injection of Photorhabdus bacteria into flies fails to induce the transcription of antimicrobial peptide genes and stress-related genes in Drosophila. These results suggest that Heterorhabditis nematodes and their associated Photorhabdus bacteria employ distinct strategies to evade the Drosophila immune response and establish infection.

Keywords

Transcription, Genetic, Polymerase Chain Reaction, Immunity, Innate, Immunity, Humoral, Drosophila melanogaster, Gene Expression Regulation, Animals, Insect Proteins, Photorhabdus, Rhabditoidea, Symbiosis, Antimicrobial Cationic Peptides

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!