<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Molecular models of cell fate specification typically focus on the activation of specific lineage programs. However, the concurrent repression of unwanted transcriptional networks is also essential to stabilize certain cellular identities, as shown in a number of diverse systems and phyla. Here, we demonstrate that this dual requirement also holds true in the context of Drosophila myogenesis. By integrating genetics and genomics, we identified a new role for the pleiotropic transcriptional repressor Tramtrack69 in myoblast specification. Drosophila muscles are formed through the fusion of two discrete cell types: founder cells (FCs) and fusion-competent myoblasts (FCMs). When tramtrack69 is removed, FCMs appear to adopt an alternative muscle FC-like fate. Conversely, ectopic expression of this repressor phenocopies muscle defects seen in loss-of-function lame duck mutants, a transcription factor specific to FCMs. This occurs through Tramtrack69-mediated repression in FCMs, whereas Lame duck activates a largely distinct transcriptional program in the same cells. Lineage-specific factors are therefore not sufficient to maintain FCM identity. Instead, their identity appears more plastic, requiring the combination of instructive repressive and activating programs to stabilize cell fate.
Chromatin Immunoprecipitation, Embryo, Nonmammalian, Gene Expression Regulation, Developmental, Cell Differentiation, Stem Cells and Regeneration, Muscle Development, Mesoderm, Myoblasts, Repressor Proteins, Myogenic Regulatory Factors, Animals, Drosophila Proteins, Drosophila, In Situ Hybridization, Fluorescence
Chromatin Immunoprecipitation, Embryo, Nonmammalian, Gene Expression Regulation, Developmental, Cell Differentiation, Stem Cells and Regeneration, Muscle Development, Mesoderm, Myoblasts, Repressor Proteins, Myogenic Regulatory Factors, Animals, Drosophila Proteins, Drosophila, In Situ Hybridization, Fluorescence
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |