
Background and Hypothesis: Reperfusion injury accounts for ~50% of myocardial infarct size, and clinically efficacious therapies are lacking. Histone deacetylase (HDAC) inhibition enhances cardiomyocyte autophagic activity, mitochondria biogenesis, and blunts ischemia/reperfusion (I/R) injury when given at the time of reperfusion. However, as HDAC inhibition has pleiotropic effects, we will test whether augmentation of autophagic flux using a specific autophagy-inducing peptide, Tat-Beclin (TB), is cardioprotective. Methods: 8-12-week-old, wild-type, C57BL6 mice were randomized into three groups: vehicle control, Tat-Scrambled (TS) peptide, or Tat-Beclin (TB) peptide. Each group was subjected to I/R surgery (45min ischemia, 24h reperfusion). Infarct size, systolic function, and mitochondrial dynamics were assayed. Cultured neonatal rat ventricular myocytes (NRVMs) were used to test for cardiomyocyte specificity. Conditional cardiomyocyte ATG7 knockout (ATG7 KO) mice and ATG7 knockdown by siRNA in NRVMs were used to evaluate the role of autophagy. Results: TB treatment at reperfusion reduced infarct size by 20.1±6.3% (n=23, p<0.02) and improved systolic function. Increased autophagic flux and reduced reactive oxygen species (ROS) were observed in the infarct border zone. The cardioprotective effects of TB were abolished in ATG7 KO mice. TB increased mtDNA content in the border zone significantly. In NRVMs subjected to I/R, TB reduced cell death by 41±6% (n=12, p<0.001), decreased ROS, and increased mtDNA content significantly by ~50%. Moreover, TB promoted expression of PGC1α (a major driver of mitochondrial biogenesis) both in the infarct border zone and NRVMs subjected to I/R by ~40%, and increased levels of mitochondrial dynamics gene transcripts Drp1, Fis1, and MFN1 / 2. Conversely, ATG7 knockdown in NRVMs and cardiac ATG7 KO abolished the beneficial effects of TB on mitochondria DNA content. Conclusions: Autophagic flux is an essential process to mitigate myocardial reperfusion injury acting, at least in part, by inducing PGC1α-mediated mitochondrial biogenesis. Augmentation of autophagic flux may emerge as a viable clinical therapy to reduce reperfusion injury in myocardial infarction.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
