Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mechanisms of p53-mediated repression of the human polycystic kidney disease-1 promoter

Authors: Diederik van Bodegom; Wijnand Roessingh; Andrew Pridjian; Samir S. El Dahr;

Mechanisms of p53-mediated repression of the human polycystic kidney disease-1 promoter

Abstract

We previously reported that the tumor suppressor protein p53 participates in a negative feedback loop to fine-tune PKD1 gene expression. This physiological pathway is believed to prevent polycystin-1 overexpression and thus renal cysts. The present study examined the mechanisms of p53-mediated repression of PKD1. The 5'-upstream region of the human PKD1 gene is TATA-less, GC-rich, and contains four consensus p53 binding sites at positions -2.7 kb (BS4), -1.2 kb (BS3), -0.8 kb (BS2), and -0.2 kb (BS1), respectively. PKD1BS1-4 are bound to endogenous p53 in vivo and in vitro. Transient transfection assays in inner medullary collecting duct cells revealed that disruption of PKD1BS1 enhances baseline PKD1 promoter activity; in contrast, disruption of PKD1BS4 suppressed PKD1 transcription. PKD1BS1 confers p53-mediated repression when substituted for the p53 enhancer element in the bradykinin B2 receptor gene, indicating that PKD1BS1 is a bona fide p53 repressor element. Moreover, PKD1BS1 requires intact BS2-4 and cellular histone deacetylase activity for full functional activity. Indeed, the PKD1BS1/4 regions are occupied by a complex containing HDAC1/2 and mSin3. These findings suggest a model whereby p53 exerts a biphasic control on PKD1 gene transcription, depending on cellular context and the cognate cis-acting element.

Related Organizations
Keywords

Binding Sites, TRPP Cation Channels, Base Sequence, Models, Genetic, Transcription, Genetic, Reverse Transcriptase Polymerase Chain Reaction, Molecular Sequence Data, Mice, Gene Expression Regulation, Mutagenesis, Animals, Humans, Tumor Suppressor Protein p53, Promoter Regions, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Top 10%
bronze