Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High-performance analog delays: surpassing Bessel-Thomson by Pade-approximated Gaussians

Authors: S. M. Kashmiri; Sandro A. P. Haddad; Wouter A. Serdijn;

High-performance analog delays: surpassing Bessel-Thomson by Pade-approximated Gaussians

Abstract

The frequency-domain exponential transfer function of a delay function cannot be realized with a finite number of lumped elements. Therefore an approximation of a rational quotient of polynomials has to be used. While the use of Bessel polynomials results in the well-known all-pole Bessel-Thomson approximation, a Taylor expansion of the exponential transfer function of a delay around one point results in another type of rational transfer, known as Pade approximation. Although a Bessel-Thomson approximation results in an overshoot-free step response it has slower response and smaller bandwidth in comparison to a Pade-approximated delay. Unfortunately, the latter suffers from overshoot. To reduce the overshoot but preserve the fast-response and large-bandwidth properties, a new delay approximation method is introduced. The method is based on approximation of the delta time-domain response of an ideal delay by a narrow Gaussian time-domain impulse response. The subsequent Pade approximation of the corresponding Gaussian transfer function yields a rational transfer function that is ready for implementation in an analog fashion and realizes a delay with both a large bandwidth and little overshoot.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!