
pmid: 28575731
In a 2012 case in New South Wales, Australia, the identity of a speaker on several audio recordings was in question. Forensic voice comparison testimony was presented based on an auditory-acoustic-phonetic-spectrographic analysis. No empirical demonstration of the validity and reliability of the analytical methodology was presented. Unlike the admissibility standards in some other jurisdictions (e.g., US Federal Rule of Evidence 702 and the Daubert criteria, or England & Wales Criminal Practice Directions 19A), Australia's Unified Evidence Acts do not require demonstration of the validity and reliability of analytical methods and their implementation before testimony based upon them is presented in court. The present paper reports on empirical tests of the performance of an acoustic-phonetic-statistical forensic voice comparison system which exploited the same features as were the focus of the auditory-acoustic-phonetic-spectrographic analysis in the case, i.e., second-formant (F2) trajectories in /o/ tokens and mean fundamental frequency (f0). The tests were conducted under conditions similar to those in the case. The performance of the acoustic-phonetic-statistical system was very poor compared to that of an automatic system.
Likelihood Functions, Sound Spectrography, Forensic Sciences, Reproducibility of Results, Speech Acoustics, Phonetics, Biometric Identification, Voice, Humans, Cell Phone
Likelihood Functions, Sound Spectrography, Forensic Sciences, Reproducibility of Results, Speech Acoustics, Phonetics, Biometric Identification, Voice, Humans, Cell Phone
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
