Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Insti...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the Institute of Brewing
Article . 2008 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Construction of a SinglePEP4Allele Deletion inSaccharomyces carlsbergensisand a Preliminary Evaluation of Its Brewing Performance

Authors: Junguang Hao; Jianjun Dong; R. Alex. Speers; Wei Shen; Lianju Shan; Wei Fan; Qi Li; +2 Authors

Construction of a SinglePEP4Allele Deletion inSaccharomyces carlsbergensisand a Preliminary Evaluation of Its Brewing Performance

Abstract

The secretion of proteinase A (encoded by PEP4) from brewer's yeast is detrimental to the foam stability of unpasteurized beer. The aim of this study was to construct mutants of the allopolyploid Saccharomyces carlsbergensis strain TT, which were partially or completely deficient in proteinase A activity. Allelic PEP4 genes were consecutively disrupted by using the Cre-loxP recombination system combined with PCR-mediated gene disruption. A single PEP4 deletion mutant TT-M was successfully constructed. However, no viable mutant could be obtained when the second allelic PEP4 gene was deleted. The brewing performances of the parent strain and the modified strain were compared on a 100 L pilot fermenter scale. Proteinase A activity in fermented wort brewed with mutant strain TT-M was significantly lower (p 0.05) was found. The mutant TT-M remained genetically stable, as shown by diagnostic PCR, after re-streaking for 20 generations. The flavor and taste of the final fermented wort, brewed with the mutant strain TT-M, was evaluated by the Tsingtao expert sensory panel, and found to be comparable to that of the parent strain and exhibited no distinct defects. The flavor component profiles of these two finished products were also comparable. The study demonstrated allelic genes in polyploid industrial yeasts could be efficiently and consecutively deleted by the retractive primer disruption strategy, and the mutant of Saccharomyces carlsbergensis partially deficient in proteinase A contributed to an improvement in foam stability.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average
bronze