Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Contribution of Myosin Rod Protein to the Structural Organization of Adult and Embryonic Muscles in Drosophila

Authors: Clara Franzini-Armstrong; David M. Standiford; Erzsebet Polyak; Charles P. Emerson; Vladimir Yakopson;

Contribution of Myosin Rod Protein to the Structural Organization of Adult and Embryonic Muscles in Drosophila

Abstract

Myosin rod protein (MRP) is a naturally occurring 155 kDa protein in Drosophila that includes the myosin heavy chain (MHC) rod domain, but contains a unique 77 amino acid residue N-terminal region that replaces the motor and light chain-binding domains of S1. MRP is a major component of myofilaments in certain direct flight muscles (DFMs) and it is present in other somatic, cardiac and visceral muscles in adults, larvae and embryos, where it is coexpressed and polymerized into thick filaments along with MHC. DFM49 has a relatively high content of MRP, and is characterized by an unusually disordered myofibrillar ultrastructure, which has been attributed to lack of cross-bridges in the filament regions containing MRP. Here, we characterize in detail the structural organization of myofibrils in adult and embryonic Drosophila muscles containing various MRP/MHC ratios and in embryos carrying a null mutation for the single MHC gene. We examined MRP in embryonic body wall and intestinal muscles as well as in DFMs with consistent findings. In DFMs numbers 49, 53 and 55, MRP is expressed at a high level relative to MHC and is associated with disorder in the positioning of thin filaments relative to thick filaments in the areas of overlap. Embryos that express MRP in the absence of MHC form thick filaments that participate in the assembly of sarcomeres, suggesting that myofibrillogenesis does not depend on strong myosin-actin interactions. Further, although thick filaments are not well ordered, the relative positioning of thin filaments is fairly regular in MRP-only containing sarcomeres, confirming the hypothesis that the observed disorder in MRP/MHC containing wild-type muscles is due to the combined action between the functional behavior of MRP and MHC myosin heads. Our findings support the conclusion that MRP has an active function to modulate the contractile activity of muscles in which it is expressed.

Related Organizations
Keywords

Sarcomeres, Muscles, Myosin Subfragments, Genes, Insect, Animals, Genetically Modified, Microscopy, Electron, Lac Operon, Mutagenesis, Animals, Drosophila Proteins, Drosophila

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!