Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Genetic ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Genetic Systems
Article . 2008 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decoupled differentiation of gene expression and coding sequence among Drosophila populations

Authors: Chung-I Wu; Joshua A. Shapiro; Michael H. Kohn;

Decoupled differentiation of gene expression and coding sequence among Drosophila populations

Abstract

Owing to the relevance to evolutionary theories of genotypic and phenotypic evolution, the correspondence of differentiation among natural populations in complex phenotypic traits and genetic markers has been studied extensively, and generally found to be poor. In contrast, the correspondence of differentiation among natural populations in gene expression, now often considered a genomic era proxy for the phenotype, and genetic markers, remains largely unexplored. Here, an analysis of expression and nucleotide sequence polymorphism of 106 genes in Drosophila melanogaster strains of the Cosmopolitan (M) and Zimbabwe, Africa (Z) mating races showed that differentiation of gene expression and of coding sequences, measured as QST and GST, respectively, were uncorrelated and, generally, QST > GST. However, an exploratory analysis showed that GST of the 5 prime sequences of genes was correlated with QST calculated from expression data, while GST of the coding sequences remained uncorrelated with QST. This scenario is consistent with the population differentiation at cis-regulatory regions that is decoupled from differentiation of the coding regions. However, despite evidence for selection on global levels of gene expression (deduced from QST > GST), 5 prime sequence polymorphisms generally were compatible with selective neutrality, suggesting differentiation in cis-regulated gene expression for these genes has been promoted by drift or selection too weak or too long ago to be detected, or higher organizational levels underlying the genetic architecture of expression are targets of selection. In all, this raises the question how selection on the expression changes (i.e. the phenotype) can be so obvious yet elusive at the level of the nucleotide sequence. Our contrasts between genetic differentiation of populations in expression and sequences revealed that even when genotype and phenotype can be connected the sources of variation that are the target of selection remain to be identified.

Related Organizations
Keywords

Evolution, Molecular, Drosophila melanogaster, Polymorphism, Genetic, Gene Expression Regulation, 5' Flanking Region, Genetic Code, Gene Expression Profiling, Animals, Genes, Insect, Genomics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Average
Top 10%
gold