
pmid: 31814315
Abstract Multistimuli‐responsive hydrogels with specific functions have attracted great interest for biomedical applications; however, these smart hydrogels usually require the presynthesis of macromolecular building blocks with multiple ligands and the integration of bioactive cargoes into the gels. Here, a multistimuli‐responsive hydrogel with potent antibacterial activity by a combination of supramolecular assembly and iminoboronate chemistry is reported. The hydrogel consists of all‐small‐molecule building blocks including aminoglycoside, guanosine, potassium ion, and a bifunctional anchor bearing both boronic acid and aldehyde groups. Guanosines form quadruplexes in the presence of potassium ions via supramolecular assembly, and the bifunctional anchor connects aminoglycosides, a class of potent antibiotics to cis‐diol groups on quadruplexes via dynamic iminoboronate chemistry, yielding a smart hydrogel containing abundant antibiotics. The hydrogel is sensitive to multistimuli such as heat, acids, oxidants, glucose and crown ether, which promote the release of antibiotics from the gels. Moreover, the prepared hydrogels show potent antibacterial activities both in vitro and in vivo. The results provide a new option to prepare antibacterial hydrogels with multistimuli responsiveness via facile chemistry using all‐small‐molecule building blocks.
Male, Mice, Inbred BALB C, Staphylococcus aureus, Guanosine, Hydrogels, Hydrogen Bonding, Microbial Sensitivity Tests, Hydrogen-Ion Concentration, Staphylococcal Infections, Anti-Bacterial Agents, Drug Liberation, Mice, Aminoglycosides, Pseudomonas aeruginosa, Escherichia coli, NIH 3T3 Cells, Staphylococcus epidermidis, Animals, Amikacin
Male, Mice, Inbred BALB C, Staphylococcus aureus, Guanosine, Hydrogels, Hydrogen Bonding, Microbial Sensitivity Tests, Hydrogen-Ion Concentration, Staphylococcal Infections, Anti-Bacterial Agents, Drug Liberation, Mice, Aminoglycosides, Pseudomonas aeruginosa, Escherichia coli, NIH 3T3 Cells, Staphylococcus epidermidis, Animals, Amikacin
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 70 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
